直径乘以3.14等于圆的面积吗 圆的周长公式

圆的周长公式(直径乘以3.14等于圆的面积吗)
圆是古人最早认知的几何图形之一,他们使用绳子在丈量土地时,发现只要一个人拿着绳子一端原地不动,一人拉着绳子另一端移动,就会画出一个圆形 。因而意识到圆有两个核心要素:圆心和半径 。

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

圆的定义:在同一平面内到一个定点(O)的距离(R)点的集合叫做圆,这个定点叫做圆的圆心(O) 。

需要注意的是,我们通常说的圆是指圆周,就是到圆心距离相等的点的集合 , 并不包含圆心 。这些点组成了圆形 。在一些几何题中的圆也不会给出圆心,如:一个三角形的外接圆或内切圆,但只要给出了圆 , 就可以很容易获得圆心 。

圆的半径:

连接圆上任意一点和圆心的线段叫做半径(AO),一般用r(radius)表示 。

圆的直径:

初中教科书上说,连接圆上任意两点的线段叫做弦 , 经过圆心的弦叫做直径 。其实我们可以这样理解,一条经过圆心的直线与圆相交两点,连接这两点的线段叫做直径(AB),一般用字母d(diameter)表示 。由于圆心O到点A和点B的线段均等于半径 , 所以直径的长度是2倍的半径长度,即d=2r 。

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

圆的周长:

古代数学家将大小不同的圆环沿着直尺滚动一周后发现,圆的周长总是以圆的直径乘以某个常数,这个常数就是我们现在熟知的圆周率(π) 。然而当时的人们却发现π不是一个整数 , 似乎无论如何都无法得到π的准确值,这个困扰了人们上千年之久,直到1761年德国数学家约翰·海因里希·兰伯特使用连分数法证明了π是无理数(无限不循环小数) 。在1844年法国数学家刘维尔证明了超越数的存在性之后的1882年,德国数学家林德曼证明了圆周率是超越数 。圆周率π的神秘面纱才被真正揭开了 。

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

既然圆的周长是某个常数乘以直径 , 我们就先获得了圆的周长的公式:

C=πd 或 C=2πr 。

周长用字母C(circumference)表示

圆周率π的计算:

现在很多人都理所当然认为π是常数,但并没有想过π为什么是常数?如果π不是常数,且是无限不循环小数,那么我们禅精竭虑计算出π的值将没有任何意义 。

首先,证明π是常数的过程:(没学过“相似三角形”可以直接看结论)

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

作两个以O点为圆心 , 半径为R1和R2的同心圆 。再分别作两个圆的内接正n边形( n= 10),且保证正两个正多边形过圆心的对角线重合 。两个正多边形的边长分别为K1和K2 。

我们通过:

从而我们获得结论:

圆的周长(πd 或2πr)只跟半径相关,则π为常数 。

π的计算:

与证明π为常数的方法一样,人们在计算π的值同样使用圆内接正n边形,n越大,正n边形的周长越接近圆的周长,从而计算出更加精确的π值 。这就是“割圆法” 。

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

细心的同学会发现“割圆法”中的正n边形,n都是6的倍数 。

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

这是因为利用直角三角形性质,我们可以比较容易计算出

直径乘以3.14等于圆的面积吗 圆的周长公式

文章插图
文章插图


圆的周长公式(直径乘以3.14等于圆的面积吗)

这些角对应的边长(具体将在以后介绍) 。

趣闻

为什么科学家现在还在计算π的值?

当1882年德国数学家林德曼证明了圆周率是超越数后,人们开始意识到这个世界的神奇 。目前存在自然界中的超越数只有两个π(圆周率)和e(自然对数),其他的超越数都是人为定义的 。人们相信如果能找到更多的超越数,揭开这些超越数的神秘面纱,我们就能探索到宇宙的尽头 。
【直径乘以3.14等于圆的面积吗 圆的周长公式】


    以上关于本文的内容,仅作参考!温馨提示:如遇健康、疾病相关的问题,请您及时就医或请专业人士给予相关指导!

    「四川龙网」www.sichuanlong.com小编还为您精选了以下内容,希望对您有所帮助: